Rank revealing factorizations, and low rank approximations

L. Grigori
Inria Paris, UPMC

March 2018

Plan

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing QR factorization
LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Randomized algorithms for low rank approximation

Plan

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Randomized algorithms for low rank approximation

Low rank matrix approximation

- Problem: given $m \times n$ matrix A, compute rank-k approximation $Z W^{\top}$, where Z is $m \times k$ and W^{T} is $k \times n$.

- Problem with diverse applications
\square from scientific computing: fast solvers for integral equations, H-matrices
\square to data analytics: principal component analysis, image processing, ...

$$
\begin{gathered}
A x \rightarrow Z W^{T} x \\
\text { Flops } \quad 2 m n \rightarrow 2(m+n) k
\end{gathered}
$$

Singular value decomposition

Given $A \in \mathbb{R}^{m \times n}, m \geq n$ its singular value decomposition is

$$
A=U \Sigma V^{T}=\left(\begin{array}{lll}
U_{1} & U_{2} & U_{3}
\end{array}\right) \cdot\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2} \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right)^{T}
$$

where

- U is $m \times m$ orthogonal matrix, the left singular vectors of A, U_{1} is $m \times k, U_{2}$ is $m \times n-k, U_{3}$ is $m \times m-n$
- Σ is $m \times n$, its diagonal is formed by $\sigma_{1}(A) \geq \ldots \geq \sigma_{n}(A) \geq 0$ Σ_{1} is $k \times k, \Sigma_{2}$ is $n-k \times n-k$
- V is $n \times n$ orthogonal matrix, the right singular vectors of A, V_{1} is $n \times k, V_{2}$ is $n \times n-k$

Norms

$$
\begin{aligned}
& \|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}=\sqrt{\sigma_{1}^{2}(A)+\ldots \sigma_{n}^{2}(A)} \\
& \|A\|_{2}=\sigma_{\max }(A)=\sigma_{1}(A)
\end{aligned}
$$

Some properties:

$$
\|A\|_{2} \leq\|A\|_{F} \leq \sqrt{\min (m, n)}\|A\|_{2}
$$

Orthogonal Invariance: If $Q \in \mathbb{R}^{m \times m}$ and $Z \in \mathbb{R}^{n \times n}$ are orthogonal, then

$$
\begin{aligned}
\|Q A Z\|_{F} & =\|A\|_{F} \\
\|Q A Z\|_{2} & =\|A\|_{2}
\end{aligned}
$$

Low rank matrix approximation

- Best rank-k approximation $A_{k}=U_{k} \Sigma_{k} V_{k}$ is rank-k truncated SVD of A [Eckart and Young, 1936]

$$
\begin{equation*}
\min _{\operatorname{rank}\left(\tilde{A}_{k}\right) \leq k}\left\|A-\tilde{A}_{k}\right\|_{2}=\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}(A) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\min _{\operatorname{rank}\left(\tilde{A}_{k}\right) \leq k}\left\|A-\tilde{A}_{k}\right\|_{F}=\left\|A-A_{k}\right\|_{F}=\sqrt{\sum_{j=k+1}^{n} \sigma_{j}^{2}(A)} \tag{2}
\end{equation*}
$$

Original image of size 919×707

Rank-38 approximation, SVD

Rank-75 approximation, SVD

- Image source: https:
//upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg

Large data sets

Matrix A might not exist entirely at a given time, rows or columns are added progressively.

- Streaming algorithm: can solve an arbitrarily large problem with one pass over the data (a row or a column at a time).
- Weakly streaming algorithm: can solve a problem with $O(1)$ passes over the data.

Matrix A might exist only implicitly, and it is never formed explicitly.

Low rank matrix approximation: trade-offs

Plan

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Randomized algorithms for low rank approximation

Low rank approximation based on max-vol

Theorem
([Goreinov and Tyrtshnikov, 2001, Thm. 2.1]) Given the matrix

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \tag{3}\\
A_{21} & A_{22}
\end{array}\right]
$$

where $A_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., maximum determinant in absolute value) among all $k \times k$ submatrices of A, then we have

$$
\begin{equation*}
\left\|S\left(A_{11}\right)\right\|_{\max } \leq(k+1) \sigma_{k+1}, \tag{4}
\end{equation*}
$$

where $S\left(A_{11}\right)=A_{22}-A_{21} A_{11}^{-1} A_{12}$.
But finding a submatrix with maximum volume is NP-hard [Civril and Magdon-Ismail, 2013].

Proof of Theorem 1

Consider a nonsingular submatrix $\bar{A} \in \mathbb{R}^{(k+1) \times(k+1)}$ of A formed as below, and $d=a-c^{T} A_{11}^{-1} b$ an element of $S\left(A_{11}\right)$. We can write:

$$
\underbrace{\left[\begin{array}{ll}
A_{11} & b \tag{5}\\
c^{T} & a
\end{array}\right]}_{\bar{A}}\left[\begin{array}{cc}
l & -A_{11}{ }^{-1} b \\
0 & l
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & 0 \\
c^{T} & d
\end{array}\right],
$$

The element in the last diagonal position of \bar{A}^{-1} is:

$$
\begin{equation*}
\left|\bar{A}^{-1}(k+1, k+1)\right|=\left|d^{-1}\right|=\frac{\left|\operatorname{det}\left(A_{11}\right)\right|}{|\operatorname{det}(\bar{A})|} . \tag{6}
\end{equation*}
$$

We will show that $\left\|\bar{A}^{-1}\right\|_{\max }=\left|d^{-1}\right|$.

Proof of Theorem 1 (contd)

Consider a permutation of \bar{A} as below, where $h=e-g^{\top} B^{-1} f$:

$$
\tilde{A}=P_{r} \bar{A} P_{c}=\left[\begin{array}{ll}
\bar{A}_{11} & f \tag{7}\\
g^{T} & e
\end{array}\right], \quad\left[\begin{array}{cc}
\bar{A}_{11} & f \\
g^{T} & e
\end{array}\right]\left[\begin{array}{cc}
l & -\bar{A}_{11}^{-1} f \\
0 & l
\end{array}\right]=\left[\begin{array}{ll}
\bar{A}_{11} & 0 \\
g^{T} & h
\end{array}\right]
$$

By using the fact that the determinant of a permutation matrix is ± 1, we have:

$$
\begin{equation*}
\left|h^{-1}\right|=\frac{\left|\operatorname{det}\left(\bar{A}_{11}\right)\right|}{|\operatorname{det}(\tilde{A})|}=\frac{\left|\operatorname{det}\left(\bar{A}_{11}\right)\right|}{|\operatorname{det}(\bar{A})|}, \tag{8}
\end{equation*}
$$

Since A_{11} has maximum volume, we obtain $\left|h^{-1}\right| \leq\left|d^{-1}\right|$ and so $\left\|\bar{A}^{-1}\right\|_{\text {max }}=\left|d^{-1}\right|$.

Proof of Theorem 1 (contd)

Since $\left\|\bar{A}^{-1}\right\|_{2} \leq(k+1)\left\|\bar{A}^{-1}\right\|_{\max }$ and $\left\|\bar{A}^{-1}\right\|_{\max }=\left|d^{-1}\right|$ we obtain:

$$
\frac{1}{\sigma_{k+1}(\bar{A})} \leq(k+1)\left|d^{-1}\right|
$$

We obtain:

$$
|d| \leq(k+1) \sigma_{k+1}(\bar{A}) \leq(k+1) \sigma_{k+1}(A)
$$

and since d is an arbitrary element of $S\left(A_{11}\right)$ we obtain

$$
\begin{equation*}
\left\|S\left(A_{11}\right)\right\|_{\max } \leq(k+1) \sigma_{k+1}(A) . \tag{9}
\end{equation*}
$$

Plan

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing $Q R$ factorization
LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Randomized algorithms for low rank approximation

Rank revealing QR factorization

Given A of size $m \times n$, consider the decomposition

$$
A P_{c}=Q R=Q\left[\begin{array}{ll}
R_{11} & R_{12} \tag{10}\\
& R_{22}
\end{array}\right],
$$

where R_{11} is $k \times k, P_{c}$ and k are chosen such that $\left\|R_{22}\right\|_{2}$ is small and R_{11} is well-conditioned.

- By the interlacing property of singular values [Golub, Van Loan, 4th edition, page 487],

$$
\sigma_{i}\left(R_{11}\right) \leq \sigma_{i}(A) \text { and } \sigma_{j}\left(R_{22}\right) \geq \sigma_{k+j}(A)
$$

for $1 \leq i \leq k$ and $1 \leq j \leq n-k$.

- $\sigma_{k+1}(A) \leq \sigma_{\max }\left(R_{22}\right)=\left\|R_{22}\right\|$

Rank revealing QR factorization

Given A of size $m \times n$, consider the decomposition

$$
A P_{c}=Q R=Q\left[\begin{array}{ll}
R_{11} & R_{12} \tag{11}\\
& R_{22}
\end{array}\right] .
$$

If $\left\|R_{22}\right\|_{2}$ is small,

- $Q(:, 1: k)$ forms an approximate orthogonal basis for the range of A,

$$
\begin{aligned}
a(:, j) & =\sum_{i=1}^{\min (j, k)} r_{i j} Q(:, i) \in \operatorname{span}\{Q(:, 1), \ldots Q(:, k)\} \\
\operatorname{ran}(A) & \in \operatorname{span}\{Q(:, 1), \ldots Q(:, k)\}
\end{aligned}
$$

- $P_{c}\left[\begin{array}{c}-R_{11}^{-1} R_{12}\end{array}\right]$ is an approximate right null space of A.

Rank revealing QR factorization

The factorization from equation (11) is rank revealing if

$$
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(R_{11}\right)}, \frac{\sigma_{j}\left(R_{22}\right)}{\sigma_{k+j}(A)} \leq q_{1}(n, k),
$$

for $1 \leq i \leq k$ and $1 \leq j \leq \min (m, n)-k$, where

$$
\sigma_{\max }(A)=\sigma_{1}(A) \geq \ldots \geq \sigma_{\min }(A)=\sigma_{n}(A)
$$

It is strong rank revealing [Gu and Eisenstat, 1996] if in addition

$$
\left\|R_{11}^{-1} R_{12}\right\|_{\max } \leq q_{2}(n, k)
$$

- Gu and Eisenstat show that given k and f, there exists a P_{c} such that $q_{1}(n, k)=\sqrt{1+f^{2} k(n-k)}$ and $q_{2}(n, k)=f$.
- Factorization computed in $4 m n k$ (QRCP) plus O (mnk) flops.

QR with column pivoting [Businger and Golub, 1965]

Idea:

- At first iteration, trailing columns decomposed into parallel part to first column (or e_{1}) and orthogonal part (in rows $2: m$).
- The column of maximum norm is the column with largest component orthogonal to the first column.
Implementation:
- Find at each step of the QR factorization the column of maximum norm.
- Permute it into leading position.
- If $\operatorname{rank}(\mathrm{A})=\mathrm{k}$, at step $k+1$ the maximum norm is 0 .
- No need to compute the column norms at each step, but just update them since

$$
Q^{T} v=w=\left[\begin{array}{c}
w_{1} \\
w(2: n)
\end{array}\right],\|w(2: n)\|_{2}^{2}=\|v\|_{2}^{2}-w_{1}^{2}
$$

QR with column pivoting [Businger and Golub, 1965]

Sketch of the algorithm column norm vector: $\operatorname{colnrm}(j)=\|A(:, j)\|_{2}, j=1: n$. for $\mathrm{j}=1$: n do

Find column p of largest norm
if colnrm[p] $>\epsilon$ then

1. Pivot: swap columns j and p in A and modify colnrm.
2. Compute Householder matrix H_{j} s.t.

$$
H_{j} A(j: m, j)= \pm\|A(j: m, j)\|_{2} e_{1} .
$$

3. Update $A(j: m, j+1: n)=H_{j} A(j: m, j+1: n)$.
4. Norm downdate colnrm $(j+1: n)^{2}-=A(j, j+1: n)^{2}$.
else Break
end if
end for
If algorithm stops after k steps

$$
\sigma_{\max }\left(R_{22}\right) \leq \sqrt{n-k} \max _{1 \leq j \leq n-k}\left\|R_{22}(:, j)\right\|_{2} \leq \sqrt{n-k} \epsilon
$$

Strong RRQR [Gu and Eisenstat, 1996]

Since

$$
\operatorname{det}\left(R_{11}\right)=\prod_{i=1}^{k} \sigma_{i}\left(R_{11}\right)=\sqrt{\operatorname{det}\left(A^{T} A\right)} / \prod_{i=1}^{n-k} \sigma_{i}\left(R_{22}\right)
$$

a stron RRQR is related to a large $\operatorname{det}\left(R_{11}\right)$. The following algorithm interchanges columns that increase $\operatorname{det}\left(R_{11}\right)$, given f and k.

Compute a strong RRQR factorization, given k :
Compute $A \Pi=Q R$ by using QRCP
while there exist i and j such that $\operatorname{det}\left(\tilde{R}_{11}\right) / \operatorname{det}\left(R_{11}\right)>f$, where $R_{11}=R(1: k, 1: k), \Pi_{i, j+k}$ permutes columns i and $j+k$, $R \Pi_{i, j+k}=Q \tilde{R}, \tilde{R}_{11}=\tilde{R}(1: k, 1: k)$ do
Find i and j
Compute $R \Pi_{i, j+k}=Q \tilde{R}$ and $\Pi=\Pi \Pi_{i, j+k}$
end while

Strong RRQR (contd)

It can be shown that

$$
\begin{equation*}
\frac{\operatorname{det}\left(\tilde{R}_{11}\right)}{\operatorname{det}\left(R_{11}\right)}=\sqrt{\left(R_{11}^{-1} R_{12}\right)_{i, j}^{2}+\omega_{i}^{2}\left(R_{11}\right) \chi_{j}^{2}\left(R_{22}\right)} \tag{12}
\end{equation*}
$$

for any $1 \leq i \leq k$ and $1 \leq j \leq n-k$ (the 2 -norm of the j-th column of A is $\chi_{j}(A)$, and the 2 -norm of the j-th row of A^{-1} is $\omega_{j}(A)$).

Compute a strong RRQR factorization, given k :
Compute $A \Pi=Q R$ by using QRCP
while $\max _{1 \leq i \leq k, 1 \leq j \leq n-k} \sqrt{\left(R_{11}^{-1} R_{12}\right)_{i, j}^{2}+\omega_{i}^{2}\left(R_{11}\right) \chi_{j}^{2}\left(R_{22}\right)}>f$ do
Find i and j such that $\sqrt{\left(R_{11}^{-1} R_{12}\right)_{i, j}^{2}+\omega_{i}^{2}\left(R_{11}\right) \chi_{j}^{2}\left(R_{22}\right)}>f$
Compute $R \Pi_{i, j+k}=Q \tilde{R}$ and $\Pi=\Pi \Pi_{i, j+k}$
end while

Strong RRQR (contd)

- $\operatorname{det}\left(R_{11}\right)$ strictly increases with every permutation, no permutation repeats, hence there is a finite number of permutations to be performed.

Strong RRQR (contd)

Theorem

[Gu and Eisenstat, 1996] If the QR factorization with column pivoting as in equation (11) satisfies inequality

$$
\sqrt{\left(R_{11}^{-1} R_{12}\right)_{i, j}^{2}+\omega_{i}^{2}\left(R_{11}\right) \chi_{j}^{2}\left(R_{22}\right)}<f
$$

for any $1 \leq i \leq k$ and $1 \leq j \leq n-k$, then

$$
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(R_{11}\right)}, \frac{\sigma_{j}\left(R_{22}\right)}{\sigma_{k+j}(A)} \leq \sqrt{1+f^{2} k(n-k)},
$$

for any $1 \leq i \leq k$ and $1 \leq j \leq \min (m, n)-k$.

Sketch of the proof ([Gu and Eisenstat, 1996])

Assume A is full column rank. Let $\alpha=\sigma_{\max }\left(R_{22}\right) / \sigma_{\min }\left(R_{11}\right)$, and let

$$
R=\left[\begin{array}{ll}
R_{11} & \\
& R_{22} / \alpha
\end{array}\right]\left[\begin{array}{cc}
I_{k} & R_{11}^{-1} R_{12} \\
& \alpha I_{n-k}
\end{array}\right]=\tilde{R}_{1} W_{1} .
$$

We have

$$
\sigma_{i}(R) \leq \sigma_{i}\left(\tilde{R}_{1}\right)\left\|W_{1}\right\|_{2}, 1 \leq i \leq n .
$$

Since $\sigma_{\min }\left(R_{11}\right)=\sigma_{\max }\left(R_{22} / \alpha\right)$, then $\sigma_{i}\left(\tilde{R}_{1}\right)=\sigma_{i}\left(R_{11}\right)$, for $1 \leq i \leq k$.

$$
\begin{aligned}
\left\|W_{1}\right\|_{2}^{2} & \leq 1+\left\|R_{11}^{-1} R_{12}\right\|_{2}^{2}+\alpha^{2}=1+\left\|R_{11}^{-1} R_{12}\right\|_{2}^{2}+\left\|R_{22}\right\|_{2}^{2}\left\|R_{11}^{-1}\right\|_{2}^{2} \\
& \leq 1+\left\|R_{11}^{-1} R_{12}\right\|_{F}^{2}+\left\|R_{22}\right\|_{F}^{2}\left\|R_{11}^{-1}\right\|_{F}^{2} \\
& =1+\sum_{i=1}^{k} \sum_{j=1}^{n-k}\left(\left(R_{11}^{-1} R_{12}\right)_{i, j}^{2}+\omega_{i}^{2}\left(R_{11}\right) \chi_{j}^{2}\left(R_{22}\right)\right) \leq 1+f^{2} k(n-k)
\end{aligned}
$$

We obtain,

$$
\frac{\sigma_{i}(A)}{\sigma_{i}\left(R_{11}\right)} \leq \sqrt{1+f^{2} k(n-k)}
$$

Tournament pivoting [Demmel et al., 2015]

One step of CA_RRQR, tournament pivoting used to select k columns

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree

\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Permute $A_{j i}$ in leading positions, compute QR with no pivoting

$$
A P_{c 1}=Q_{1}\left(\begin{array}{ll}
R_{11} & * \\
& *
\end{array}\right)
$$

Tournament pivoting [Demmel et al., 2015]

One step of CA_RRQR, tournament pivoting used to select k columns

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel

- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Permute $A_{j i}$ in leading positions, compute QR with no pivoting

$$
A P_{c 1}=Q_{1}\left(\begin{array}{ll}
R_{11} & * \\
& *
\end{array}\right)
$$

Tournament pivoting [Demmel et al., 2015]

One step of CA_RRQR, tournament pivoting used to select k columns

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR
 with column pivoting
- Permute $A_{j i}$ in leading positions, compute QR with no pivoting

$$
A P_{c 1}=Q_{1}\left(\begin{array}{ll}
R_{11} & * \\
& *
\end{array}\right)
$$

Tournament pivoting [Demmel et al., 2015]

One step of CA_RRQR, tournament pivoting used to select k columns

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR
 with column pivoting
- Permute $A_{j i}$ in leading positions, compute QR with no pivoting

$$
A P_{c 1}=Q_{1}\left(\begin{array}{ll}
R_{11} & * \\
& *
\end{array}\right)
$$

Tournament pivoting [Demmel et al., 2015]

One step of CA_RRQR, tournament pivoting used to select k columns

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Permute $A_{j i}$ in leading positions, compute $Q R$ with no pivoting

$$
A P_{c 1}=Q_{1}\left(\begin{array}{ll}
R_{11} & * \\
& *
\end{array}\right)
$$

Tournament pivoting [Demmel et al., 2015]

One step of CA_RRQR, tournament pivoting used to select k columns

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Permute $A_{j i}$ in leading positions, compute $Q R$ with no pivoting

Select k columns from a tall and skinny matrix

Given W of size $m \times 2 k, m \gg k, k$ columns are selected as:

$$
\begin{aligned}
& W=Q R_{02} \text { using TSQR } \\
& R_{02} P_{c}=Q_{2} R_{2} \text { using QRCP } \\
& \text { Return } W P_{c}(:, 1: k)
\end{aligned}
$$

$$
\text { Parallel: } w=\left[\begin{array}{l}
W_{0} \\
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right] \begin{array}{ll}
\rightarrow & R_{00} \\
\rightarrow & R_{10} \\
R_{20}
\end{array} \longrightarrow R_{01} \longrightarrow R_{11} \longrightarrow R_{02}
$$

Reduction trees

Any shape of reduction tree can be used during CA_RRQR, depending on the underlying architecture.

- Flat tree:
- Binary tree:

Notation: at each node of the reduction tree, $f\left(A_{i j}\right)$ returns the first b columns obtained after performing (strong) RRQR of $A_{i j}$.

Rank revealing properties of CA-RRQR

It is shown in [Demmel et al., 2015] that the column permutation computed by CA-RRQR satisfies

$$
\begin{equation*}
\chi_{j}^{2}\left(R_{11}^{-1} R_{12}\right)+\left(\chi_{j}\left(R_{22}\right) / \sigma_{\min }\left(R_{11}\right)\right)^{2} \leq F_{T P}^{2}, \text { for } j=1, \ldots, n-k . \tag{13}
\end{equation*}
$$

where $F_{T P}$ depends on k, f, n, the shape of reduction tree used during tournament pivoting, and the number of iterations of CARRQR.

CA-RRQR - bounds for one tournament

Selecting k columns by using tournament pivoting reveals the rank of A with the following bounds:

$$
\begin{gathered}
1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(R_{11}\right)}, \frac{\sigma_{j}\left(R_{22}\right)}{\sigma_{k+j}(A)} \leq \sqrt{1+F_{T P}^{2}(n-k)}, \\
\left\|R_{11}^{-1} R_{12}\right\|_{\max } \leq F_{T P}
\end{gathered}
$$

- Binary tree of depth $\log _{2}(n / k)$,

$$
\begin{equation*}
F_{T P} \leq \frac{1}{\sqrt{2 k}}(n / k)^{\log _{2}(\sqrt{2} f k)} . \tag{14}
\end{equation*}
$$

The upper bound is a decreasing function of k when $k>\sqrt{n /(\sqrt{2} f)}$.

- Flat tree of depth n / k,

$$
\begin{equation*}
F_{T P} \leq \frac{1}{\sqrt{2 k}}(\sqrt{2} f k)^{n / k} \tag{15}
\end{equation*}
$$

Cost of CA-RRQR

Cost of CA-RRQR vs $Q R$ with column pivoting
$n \times n$ matrix on $\sqrt{P} \times \sqrt{P}$ processor grid, block size k

Flops :	$4 n^{3} / P+O\left(n^{2} k \log P / \sqrt{P}\right)$	vs	$(4 / 3) n^{3} / P$
Bandwidth:	$O\left(n^{2} \log P / \sqrt{P}\right)$	vs	same
Latency :	$O(n \log P / k)$	vs	$O(n \log P)$

Communication optimal, modulo polylogarithmic factors, by choosing

$$
k=\frac{1}{2 \log ^{2} P} \frac{n}{\sqrt{P}}
$$

Numerical results

- Stability close to QRCP for many tested matrices.
- Absolute value of diagonals of R, L referred to as R-values, L-values.
- Methods compared
\square RRQR: QR with column pivoting
\square CA-RRQR-B with tournament pivoting based on binary tree
\square CA-RRQR-F with tournament pivoting based on flat tree
\square SVD

Numerical results - devil's stairs

Devil's stairs (Stewart), a matrix with multiple gaps in the singular values.

Matlab code:
Length $=20 ; \mathrm{s}=\operatorname{zeros}(\mathrm{n}, 1) ;$ Nst $=$ floor($\mathrm{n} /$ Length $)$;
for $\mathrm{i}=1$: Nst do $\mathrm{s}\left(1+\right.$ Length $^{*}(\mathrm{i}-1)$:Length $\left.{ }^{*} \mathrm{i}\right)=-0.6^{*}(\mathrm{i}-1) ;$
end for
$s($ Length $*$ Nst : end $)=-0.6 *($ Nst -1$)$;
$s=10 . \wedge s ;$
$\mathrm{A}=\operatorname{orth}(\operatorname{rand}(\mathrm{n}))^{*} \operatorname{diag}(\mathrm{~s}) * \operatorname{orth}(\operatorname{randn}(\mathrm{n})) ;$

QLP decomposition (Stewart)

$$
\begin{aligned}
A P_{c_{1}} & =Q_{1} R_{1} \text { using ca_rrqr } \\
R_{1}^{T} & =Q_{2} R_{2}
\end{aligned}
$$

Numerical results - devil's stairs

Devil's stairs (Stewart), a matrix with multiple gaps in the singular values.

Matlab code:
Length $=20 ; \mathrm{s}=\operatorname{zeros}(\mathrm{n}, 1) ;$ Nst $=$ floor($\mathrm{n} /$ Length $)$;
for $\mathrm{i}=1$: Nst do $\mathrm{s}\left(1+\right.$ Length ${ }^{*}(\mathrm{i}-1)$:Length $\left.{ }^{*} \mathrm{i}\right)=-0.6^{*}(\mathrm{i}-1) ;$
end for
$s($ Length $*$ Nst : end $)=-0.6 *($ Nst -1$)$;
$s=10 . \wedge s$;
$\mathrm{A}=\operatorname{orth}(\operatorname{rand}(\mathrm{n})) * \operatorname{diag}(\mathrm{~s}) * \operatorname{orth}(\operatorname{randn}(\mathrm{n}))$;

QLP decomposition (Stewart)

$$
\begin{aligned}
A P_{c_{1}} & =Q_{1} R_{1} \text { using ca_rrqr } \\
R_{1}^{T} & =Q_{2} R_{2}
\end{aligned}
$$

Numerical results (contd)

- Left: exponent - exponential Distribution, $\sigma_{1}=1, \sigma_{i}=\alpha^{i-1}(i=2, \ldots, n)$, $\alpha=10^{-1 / 11}$ [Bischof, 1991]
- Right: shaw - 1D image restoration model [Hansen, 2007]

$$
\begin{align*}
& \epsilon \min \left\{\left\|\left(A \Pi_{0}\right)(:, i)\right\|_{2},\left\|\left(A \Pi_{1}\right)(:, i)\right\|_{2},\left\|\left(A \Pi_{2}\right)(:, i)\right\|_{2}\right\} \tag{16}\\
& \epsilon \max \left\{\left\|\left(A \Pi_{0}\right)(:, i)\right\|_{2},\left\|\left(A \Pi_{1}\right)(:, i)\right\|_{2},\left\|\left(A \Pi_{2}\right)(:, i)\right\|_{2}\right\} \tag{17}
\end{align*}
$$

where $\Pi_{j}(j=0,1,2)$ are the permutation matrices obtained by QRCP, CARRQR-B, and CARRQR-F, and ϵ is the machine precision.

Numerical results - a set of 18 matrices

- Ratios $|R(i, i)| / \sigma_{i}(R)$, for QRCP (top plot), CARRQR-B (second plot), and CARRQR-F (third plot).
- The number along x-axis represents the index of test matrices.

Plan

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Randomized algorithms for low rank approximation

LU versus $Q R$ - filled graph $G^{+}(A)$

- Consider A is SPD and $A=L L^{T}$
- Given $G(A)=(V, E), G^{+}(A)=\left(V, E^{+}\right)$is defined as: there is an edge $(i, j) \in G^{+}(A)$ iff there is a path from i to j in $G(A)$ going through lower numbered vertices.
- $G\left(L+L^{T}\right)=G^{+}(A)$, ignoring cancellations.
- Definition holds also for directed graphs (LU factorization).
$A=$

LU versus QR

Filled column intersection graph $G_{\cap}^{+}(A)$

- Graph of the Cholesky factor of $A^{T} A$
- $G(R) \subseteq G_{\cap}^{+}(A)$
- $A^{T} A$ can have many more nonzeros than A

LU versus QR

Numerical stability

- Let \hat{L} and \hat{U} be the computed factors of the block LU factorization. Then

$$
\begin{equation*}
\hat{L} \hat{U}=A+E, \quad\|E\|_{\max } \leq c(n) \epsilon\left(\|A\|_{\max }+\|\hat{L}\|_{\max }\|\hat{U}\|_{\max }\right) . \tag{18}
\end{equation*}
$$

- For partial pivoting, $\|L\|_{\max } \leq 1,\|U\|_{\max } \leq 2^{n}\|A\|_{\max }$ In practice, $\|U\|_{\max } \leq \sqrt{n}\|A\|_{\max }$

Low rank approximation based on LU factorization

- Given desired rank k, the factorization has the form

$$
P_{r} A P_{c}=\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \tag{19}\\
\bar{A}_{21} & \bar{A}_{22}
\end{array}\right)=\left(\begin{array}{cc}
1 & \\
\bar{A}_{21} \bar{A}_{11}^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
& S\left(\bar{A}_{11}\right)
\end{array}\right),
$$

where $A \in \mathbb{R}^{m \times n}, \bar{A}_{11} \in \mathbb{R}^{k, k}, S\left(\bar{A}_{11}\right)=\bar{A}_{22}-\bar{A}_{21} \bar{A}_{11}^{-1} \bar{A}_{12}$.

- The rank-k approximation matrix \tilde{A}_{k} is

$$
\tilde{A}_{k}=\binom{l}{\bar{A}_{21} \bar{A}_{11}^{-1}}\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12}
\end{array}\right)=\binom{\bar{A}_{11}}{\bar{A}_{21}} \bar{A}_{11}^{-1}\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \tag{20}
\end{array}\right) .
$$

- \bar{A}_{11}^{-1} is never formed, its factorization is used when \tilde{A}_{k} is applied to a vector.
- In randomized algorithms, $U=C^{+} A R^{+}$, where C^{+}, R^{+}are Moore-Penrose generalized inverses.

Design space

Non-exhaustive list for selecting k columns and rows:

1. Select k linearly independent columns of A (call result B), by using 1.1 (strong) QRCP/tournament pivoting using QR,
1.2 LU / tournament pivoting based on LU, with some form of pivoting (column, complete, rook),
1.3 randomization: premultiply $X=Z A$ where random matrix Z is short and fat, then pick k rows from X^{T}, by some method from 2) below,
1.4 tournament pivoting based on randomized algorithms to select columns at each step.
2. Select k linearly independent rows of B, by using 2.1 (strong) QRCP / tournament pivoting based on QR on B^{T}, or on Q^{T}, the rows of the thin Q factor of B,
2.2 LU / tournament pivoting based on LU, with pivoting (row, complete, rook) on B,
2.3 tournament pivoting based on randomized algorithms to select rows.

Select k cols using tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column
 pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$

Select k cols using tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting

- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$

Select k cols using tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j

- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$

Select k cols using tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j

- Select k cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$

Select k cols using tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from $\left(A_{v, i-1}, A_{w, i-1}\right)$, by using QR with column pivoting
- Return columns in $A_{j i}$

Select k cols using tournament pivoting

- Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
\square At each node j do in parallel
- Let $A_{v, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
- Select k cols from
($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
- Return columns in $A_{j i}$

LU_CRTP factorization - one block step

One step of truncated block LU based on column/row tournament pivoting on matrix A of size $m \times n$:

1. Select k columns by using tournament pivoting, permute them in front, bounds for s.v. governed by $q_{1}(n, k)$

$$
A P_{c}=Q\left(\begin{array}{ll}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right)=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right)\left(\begin{array}{ll}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right)
$$

2. Select k rows from $\left(Q_{11} ; Q_{21}\right)^{T}$ of size $m \times k$ by using tournament pivoting,

$$
P_{r} Q=\left(\begin{array}{ll}
\bar{Q}_{11} & \bar{Q}_{12} \\
\bar{Q}_{21} & \bar{Q}_{22}
\end{array}\right)
$$

such that $\left\|\bar{Q}_{21} \bar{Q}_{11}^{-1}\right\|_{\max } \leq F_{T P}$ and bounds for s.v. governed by $q_{2}(m, k)$.

Orthogonal matrices

Given orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ and its partitioning

$$
Q=\left(\begin{array}{ll}
Q_{11} & Q_{12} \tag{21}\\
Q_{21} & Q_{22}
\end{array}\right),
$$

the selection of k cols by tournament pivoting from $\left(Q_{11} ; Q_{21}\right)^{T}$ leads to the factorization

$$
P_{r} Q=\left(\begin{array}{ll}
\bar{Q}_{11} & \bar{Q}_{12} \tag{22}\\
\bar{Q}_{21} & \bar{Q}_{22}
\end{array}\right)=\left(\begin{array}{cc}
1 & \\
\bar{Q}_{21} \bar{Q}_{11}^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
\bar{Q}_{11} & \bar{Q}_{12} \\
& S\left(\bar{Q}_{11}\right)
\end{array}\right)
$$

where $S\left(\bar{Q}_{11}\right)=\bar{Q}_{22}-\bar{Q}_{21} \bar{Q}_{11}^{-1} \bar{Q}_{12}=\bar{Q}_{22}^{-T}$.

Orthogonal matrices (contd)

The factorization

$$
P_{r} Q=\left(\begin{array}{ll}
\bar{Q}_{11} & \bar{Q}_{12} \tag{23}\\
\bar{Q}_{21} & \bar{Q}_{22}
\end{array}\right)=\left(\begin{array}{cc}
1 & \\
\bar{Q}_{21} \bar{Q}_{11}^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
\bar{Q}_{11} & \bar{Q}_{12} \\
& S\left(\bar{Q}_{11}\right)
\end{array}\right)
$$

satisfies:

$$
\begin{align*}
\rho_{j}\left(\bar{Q}_{21} \bar{Q}_{11}^{-1}\right) & \leq F_{T P}, \tag{24}\\
\frac{1}{q_{2}(m, k)} & \leq \sigma_{i}\left(\bar{Q}_{11}\right) \leq 1, \tag{25}\\
\sigma_{\min }\left(\bar{Q}_{11}\right) & =\sigma_{\min }\left(\bar{Q}_{22}\right) \tag{26}
\end{align*}
$$

for all $1 \leq i \leq k, 1 \leq j \leq m-k$, where $\rho_{j}(A)$ is the 2 -norm of the j-th row of $A, q_{2}(m, k)=\sqrt{1+F_{T P}^{2}(m-k)}$.

Sketch of the proof

$$
\begin{align*}
P_{r} A P_{c} & =\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \\
\bar{A}_{21} & \bar{A}_{22}
\end{array}\right)=\left(\begin{array}{cc}
I & \\
\bar{A}_{21} \bar{A}_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
& S\left(\bar{A}_{11}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\prime & \\
\bar{Q}_{21} \bar{Q}_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\bar{Q}_{11} & \bar{Q}_{12} \\
& S\left(\bar{Q}_{11}\right)
\end{array}\right)\left(\begin{array}{cc}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right) \tag{27}
\end{align*}
$$

where

$$
\begin{aligned}
\bar{Q}_{21} \bar{Q}_{11}^{-1} & =\bar{A}_{21} \bar{A}_{11}^{-1}, \\
S\left(\bar{A}_{11}\right) & =S\left(\bar{Q}_{11}\right) R_{22}=\bar{Q}_{22}^{-T} R_{22} .
\end{aligned}
$$

Sketch of the proof (contd)

$$
\begin{align*}
\bar{A}_{11} & =\bar{Q}_{11} R_{11} \tag{28}\\
S\left(\bar{A}_{11}\right) & =S\left(\bar{Q}_{11}\right) R_{22}=\bar{Q}_{22}^{-T} R_{22} . \tag{29}
\end{align*}
$$

We obtain

$$
\sigma_{i}(A) \geq \sigma_{i}\left(\bar{A}_{11}\right) \geq \sigma_{\min }\left(\bar{Q}_{11}\right) \sigma_{i}\left(R_{11}\right) \geq \frac{1}{q_{1}(n, k) q_{2}(m, k)} \sigma_{i}(A)
$$

We also have that

$$
\begin{aligned}
\sigma_{k+j}(A) \leq \sigma_{j}\left(S\left(\bar{A}_{11}\right)\right) & =\sigma_{j}\left(S\left(\bar{Q}_{11}\right) R_{22}\right) \leq\left\|S\left(\bar{Q}_{11}\right)\right\|_{2} \sigma_{j}\left(R_{22}\right) \\
& \leq q_{1}(n, k) q_{2}(m, k) \sigma_{k+j}(A),
\end{aligned}
$$

where $q_{1}(n, k)=\sqrt{1+F_{T P}^{2}(n-k)}, q_{2}(m, k)=\sqrt{1+F_{T P}^{2}(m-k)}$.

LU_CRTP factorization - bounds if rank $=k$

Given A of size $m \times n$, one step of LU_CRTP computes the decomposition

$$
\bar{A}=P_{r} A P_{c}=\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \tag{30}\\
\bar{A}_{21} & \bar{A}_{22}
\end{array}\right)=\left(\begin{array}{cc}
1 & \\
\bar{Q}_{21} \bar{Q}_{11}^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
& S\left(\bar{A}_{11}\right)
\end{array}\right)
$$

where \bar{A}_{11} is of size $k \times k$ and

$$
\begin{equation*}
S\left(\bar{A}_{11}\right)=\bar{A}_{22}-\bar{A}_{21} \bar{A}_{11}^{-1} \bar{A}_{12}=\bar{A}_{22}-\bar{Q}_{21} \bar{Q}_{11}^{-1} \bar{A}_{12} . \tag{31}
\end{equation*}
$$

It satisfies the following properties:

$$
\begin{align*}
& \rho_{l}\left(\bar{A}_{21} \bar{A}_{11}^{-1}\right)= \tag{32}\\
& \| S\left(\rho_{l}\left(\bar{Q}_{21} \bar{Q}_{11}^{-1}\right) \|_{\max } \leq F_{T P},\right. \tag{A}\\
& \min \left(\left(1+F_{T P} \sqrt{k}\right)\|A\|_{\max }, F_{T P} \sqrt{1+F_{T P}^{2}(m-k)} \sigma_{k}(A)\right) \tag{33}\\
& \\
& \quad 1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(\bar{A}_{11}\right)}, \frac{\sigma_{j}\left(S\left(\bar{A}_{11}\right)\right)}{\sigma_{k+j}(A)} \leq q(m, n, k), \\
& \text { for any } 1 \leq I \leq m-k, 1 \leq i \leq k, \text { and } 1 \leq j \leq \min (m, n)-k, \\
& q(m, n, k)=\sqrt{\left(1+F_{T P}^{2}(n-k)\right)\left(1+F_{T P}^{2}(m-k)\right) .}
\end{align*}
$$

LU_CRTP factorization - bounds if rank $=K=T k$

Consider T block steps of LU_CRTP factorization
$P_{r} A P_{c}=\left(\begin{array}{ccccc}I & & & \\ L_{21} & I & & \\ \vdots & \vdots & \ddots & \\ L_{T 1} & L_{T 2} & \cdots & I & \\ L_{T+1,1} & L_{T+1,2} & \cdots & L_{T+1, T} & I\end{array}\right)\left(\begin{array}{ccccc}U_{11} & U_{12} & \ldots & U_{1 T} & U_{1, T+1} \\ & U_{22} & \ldots & U_{2 T} & U_{2, T+1} \\ & & \ddots & \vdots & \vdots \\ & & & U_{T T} & U_{T, T+1} \\ & & & & U_{T+1, T+1}\end{array}\right)$
where $U_{t t}$ is $k \times k$ for $1 \leq t \leq T$, and $U_{T+1, T+1}$ is $(m-T k) \times(n-T k)$. Then:

$$
\begin{aligned}
& \rho_{l}\left(L_{i+1, j}\right) \leq F_{T P}, \\
& \left\|U_{K}\right\|_{\max } \leq \min \left(\left(1+F_{T P} \sqrt{k}\right)^{K / k}\|A\|_{\max }, q_{2}(m, k) q(m, n, k)^{K / k-1} \sigma_{K}(A)\right),
\end{aligned}
$$

for any $1 \leq I \leq k$. $q_{2}(m, k)=\sqrt{1+F_{T P}^{2}(m-k)}$, and
$q(m, n, k)=\sqrt{\left(1+F_{T P}^{2}(n-k)\right)\left(1+F_{T P}^{2}(m-k)\right)}$.

LU_CRTP factorization - bounds if rank $=K=T k$

Consider $T=K / k$ block steps of our LU_CRTP factorization
$P_{r} A P_{c}=\left(\begin{array}{ccccc}I & & & \\ L_{21} & I & & \\ \vdots & \vdots & \ddots & \\ L_{T 1} & L_{T 2} & \ldots & I & \\ L_{T+1,1} & L_{T+1,2} & \ldots & L_{T+1, T} & I\end{array}\right)\left(\begin{array}{ccccc}U_{11} & U_{12} & \ldots & U_{1 T} & U_{1, T+1} \\ & U_{22} & \ldots & U_{2 T} & U_{2, T+1} \\ & & \ddots & \vdots & \vdots \\ & & & U_{T T} & U_{T, T+1} \\ & & & & U_{T+1, T+1}\end{array}\right)$
where $U_{t t}$ is $k \times k$ for $1 \leq t \leq T$, and $U_{T+1, T+1}$ is $(m-T k) \times(n-T k)$. Then:

$$
\begin{aligned}
\frac{1}{\prod_{v=0}^{t-2} q(m-v k, n-v k, k)} & \leq \frac{\sigma_{(t-1) k+i}(A)}{\sigma_{i}\left(U_{t t}\right)} \leq q(m-(t-1) k, n-(t-1) k, k), \\
1 & \leq \frac{\sigma_{j}\left(U_{T+1, T+1)}\right)}{\sigma_{K+j}(A)} \leq \prod_{v=0}^{K / k-1} q(m-v k, n-v k, k),
\end{aligned}
$$

for any $1 \leq i \leq k, 1 \leq t \leq T$, and $1 \leq j \leq \min (m, n)-K$. Here
$q_{2}(m, k)=\sqrt{1+F_{T P}^{2}(m-k)}$, and
$q(m, n, k)=\sqrt{\left(1+F_{T P}^{2}(n-k)\right)\left(1+F_{T P}^{2}(m-k)\right)}$.

Arithmetic complexity - arbitrary sparse matrices

- Let d_{i} be the number of nonzeros in column i of $A, n n z(A)=\sum_{i=1}^{n} d_{i}$.
- A is permuted such that $d_{1} \leq \ldots \leq d_{n}$.
- $A=\left[A_{00}, \ldots, A_{n / k, 0}\right]$ is partitioned into n / k blocks of columns.

At first step of TP:

- Pick k cols from $A_{1}=\left[A_{00}, A_{10}\right]$ $n n z\left(A_{1}\right) \leq 2 k \sum_{i=1}^{2 k} d_{i}$, flops SR $\left(A_{1}\right) \leq 8 k^{2} \sum_{i=1}^{2 k} d_{i}$.
At the second step of TP:
- Pick k cols from A_{2}
$n n z\left(A_{2}\right) \leq 2 k \sum_{i=k+1}^{3 k} d_{i}$ flops $_{Q R}\left(A_{2}\right) \leq 8 k^{2} \sum_{i=k+1}^{3 k} d_{i}$

Arithmetic complexity - arbitrary sparse matrices (2)

$$
\begin{aligned}
n n z_{\max }\left(T P_{F T}\right) & \leq 4 d_{n} k^{2} \\
n n z_{\text {total }}\left(T P_{F T}\right) & \leq 2 k\left(\sum_{i=1}^{2 k} d_{i}+\sum_{i=k+1}^{3 k} d_{i}+\ldots+\sum_{i=n-2 k+1}^{n} d_{i}\right) \leq \\
& \leq 4 k \sum_{i=1}^{n} d_{i}=4 n n z(A) k, \\
\text { flops }\left(T P_{F T}\right) & \leq 16 n n z(A) k^{2},
\end{aligned}
$$

Tournament pivoting for sparse matrices

Arithmetic complexity
A has arbitrary sparsity structure $\begin{aligned} \text { flops }\left(T P_{F T}\right) & \leq 16 n n z(A) k^{2} \\ \text { flops }\left(T P_{B T}\right) & \leq 8 \frac{n n z(A)}{P} k^{2} \log \frac{n}{k}\end{aligned}$
$G\left(A^{T} A\right)$ is an $n^{1 / 2}$ - separable graph
flops $\left(T P_{F T}\right) \leq O\left(n n z(A) k^{3 / 2}\right)$
flops $\left(T P_{B T}\right) \leq O\left(\frac{n n z(A)}{P} k^{3 / 2} \log \frac{n}{k}\right)$
flops $\leq O(n n z(A))+n k^{2} \epsilon^{-4} \log ^{O(1)}\left(n k^{2} \epsilon^{-4}\right)$

- Tournament pivoting is faster if $e \leq \frac{1}{(n n z(A) / n)^{1 / 4}}$

Tournament pivoting for sparse matrices

Arithmetic complexity

A has arbitrary sparsity structure

flops(TP ${ }^{\text {FT }}$)

flops (TP ${ }_{B T}$)

\square

Randomized algorithm by Clarkson and Woodruff, STOC'13

- Given $n \times n$ matrix A, it computes $L D W^{T}$, where D is $k \times k$ such that with failure probability $1 / 10$
$\left\|A-L D W^{T}\right\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F}, A_{k}$ is best rank-k approximation.
- The cost of this algorithm is

$$
\text { flops } \leq O(n n z(A))+n k^{2} \epsilon^{-4} \log { }^{O(1)}\left(n k^{2} \epsilon^{-4}\right)
$$

- Tournament pivoting is faster if $\epsilon \leq \frac{1}{(n n z(A) / n)^{1 / 4}}$ $\underset{\text { of } 79}{\text { or if }} \epsilon=0.1$ and $n n z(A) / n<10^{4}$.

Plan

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing $Q R$ factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Randomized algorithms for low rank approximation

Numerical results

- Left: exponent - exponential Distribution, $\sigma_{1}=1, \sigma_{i}=\alpha^{i-1}(i=2, \ldots, n)$, $\alpha=10^{-1 / 11}$ [Bischof, 1991]
- Right: foxgood - Severely ill-posed test problem of the 1st kind Fredholm integral equation used by Fox and Goodwin

Numerical results

LU-CTP

- Here $k=16$ and the factorization is truncated at $K=128$ (bars) or $K=240$ (red lines).
- LU_CTP: Column tournament pivoting + partial pivoting
- All singular values smaller than machine precision, ϵ, are replaced by ϵ.
- The number along x-axis represents the index of test matrices.

Results for image of size 919×707

Original image

Rank-38 approx, LUPP

Rank-38 approx, SVD

Rank-38 approx, LU_CRTP

Singular value distribution

Rank-75 approx, LU_CRTP

Results for image of size 691×505

Original image

Rank-105 approx, LUPP

Rank-105 approx, SVD

Rank-105 approx, LU_CRTP

Singular value distribution

Rank-209 approx, LU_CRTP

Comparing nnz in the factors L, U versus Q, R

Name/size	Nnz	Rank K	Nnz QRCP/ Nnz LU_CRTP	Nnz LU_CRTP/ Nnz LUPP
gemat11	1232	128	2.1	2.2
4929	4895	512	3.3	2.6
	9583	1024	11.5	3.2
wang3	896	128	3.0	2.1
26064	3536	512	2.9	2.1
	7120	1024	2.9	1.2
Rfdevice	633	128	10.0	1.1
74104	2255	512	82.6	0.9
	4681	1024	207.2	0.0
Parab_fem	896	128	-	0.5
525825	3584	512	-	0.3
	7168	1024	-	0.2
Mac_econ	384	128	-	0.3
206500	1535	512	-	0.3
	5970	1024	-	0.2

Performance results

Selection of 256 columns by tournament pivoting

- Edison, Cray XC30 (NERSC): 2x12-core Intel Ivy Bridge (2.4 GHz)
- Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices:

- Parab_fem: 528825×528825
- Mac_econ: 206500×206500
dimension at leaves on 32 procs

$$
\begin{aligned}
& 528825 \times 16432 \\
& 206500 \times 6453
\end{aligned}
$$

	Time	Time leaves	Number of MPI processes						
	$2 k$ cols	32procs	16	32	64	128	256	512	1024
		$S P Q R+d G E Q P 3$							
Parab_fem	0.26	$0.26+1129$	46.7	24.5	13.7	8.4	5.9	4.8	4.4
Mac_econ	0.46	$25.4+510$	132.7	86.3	111.4	59.6	27.2	-	-

Plan

Low rank matrix approximation

Low rank approximation based on max-vol

Rank revealing QR factorization

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Randomized algorithms for low rank approximation

Randomized algorithms - main idea

- Construct a low dimensional subspace that captures the action of A.
- Restrict A to the subspace and compute a standard QR or SVD factorization.

Obtained as follows:

1. Compute an approximate basis for the range of $A(m \times n)$ find $Q(m \times k)$ with orthonormal columns and approximate A by the projection of its columns onto the space spanned by Q :

$$
A \approx Q Q^{T} A
$$

2. Use Q to compute a standard factorization of A

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decomposition, SIREV 2011.

Why a random projection works

Johnson-Lindenstrauss Lemma

For any $0<\epsilon<1$, and any set of vectors $x_{1}, . ., . x_{n}$ in \mathbb{R}^{m}, let $k \geq 4\left(\epsilon^{2} / 2-\epsilon^{3} / 3\right)^{-1} \ln (n)$. Let F be a random $k x m$ orthogonal matrix multiplied by $\sqrt{m / k}$. Then with probability at $1 / n$, for all $1<=i, j<=n$

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|^{2}<=\left\|F\left(x_{i}-x_{j}\right)\right\|^{2}<=(1+\epsilon)\left\|x_{i}-x_{j}\right\|^{2}
$$

- Any m-vector can be embedded in $k=O\left(\log (n) / \epsilon^{2}\right)$ dimensions while incurring a distortion of at most $1 \pm \epsilon$ between all pairs of m -vectors.
- JL relies on F being uniformly distributed random orthonormal matrix.
- Such an F can be obtained by computing the QR factorization of an $m \times k$ matrix of i.i.d. $N(0,1)$ random variables.

Source: Theorem 2.1 and proof in S. Dasgupta, A. Gupta, 2003, An Elementary Proof of
a Theorem of Johnson and Lindenstrauss

Typical randomized truncated SVD

Algorithm

Input: $m \times n$ matrix A, desired rank $k, I=p+k$ exponent q.

1. Sample an $n \times I$ test matrix G with independent mean-zero, unit-variance Gaussian entries.
2. Compute $Y=\left(A A^{T}\right)^{q} A G /^{*} Y$ is expected to span the column space of $A^{*} /$
3. Construct $Q \in \mathbb{R}^{m \times I}$ with columns forming an orthonormal basis for the range of Y.
4. Compute $B=Q^{T} A$
5. Compute the SVD of $B=\hat{U} \Sigma V^{T}$

Return the approximation $\tilde{A}_{k}=Q \hat{U} \cdot \Sigma \cdot V^{T}$

Randomized truncated SVD $(q=0)$

The best approximation is when Q equals the first $k+p$ left singular vectors of A. Given $A=U \Sigma V^{\top}$,

$$
\begin{aligned}
Q Q^{T} A & =U(1: m, 1: k+p) \Sigma(1: k+p, 1: k+p)(V(1: n, 1: k+p) \\
\left\|A-Q Q^{T} A\right\|_{2} & =\sigma_{k+p+1}
\end{aligned}
$$

Theorem 1.1 from Halko et al. If G is chosen to be i.i.d. $\mathrm{N}(0,1), k, p \geq 2$, $q=1$, then the expectation with respect to the random matrix G is

$$
\mathbb{E}\left(\left\|A-Q Q^{T} A\right\|_{2}\right) \leq\left(1+\frac{4 \sqrt{k+p}}{p-1} \sqrt{\min (m, n)}\right) \sigma_{k+1}(A)
$$

and the probability that the error satisfies

$$
\left\|A-Q Q^{T} A\right\|_{2} \leq(1+11 \sqrt{k+p} \cdot \sqrt{\min (m, n)}) \sigma_{k+1}(A)
$$

is at least $1-6 / p^{p}$.
For $p=6$, the probability becomes .99 .

Randomized truncated SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same hypotheses as Theorem 1.1 from Halko et al.,

$$
\mathbb{E}\left(\left\|A-Q Q^{T} A\right\|_{2}\right) \leq\left(1+\sqrt{\frac{k}{p-1}}\right) \sigma_{k+1}(A)+\frac{e \sqrt{k+p}}{p}\left(\sum_{j=k+1}^{n} \sigma_{j}^{2}(A)\right)^{1 / 2}
$$

- Fast decay of singular values:

If $\left(\sum_{j>k} \sigma_{j}^{2}(A)\right)^{1 / 2} \approx \sigma_{k+1}$ then the approximation should be accurate.

- Slow decay of singular values:

If $\left(\sum_{j>k} \sigma_{j}^{2}(A)\right)^{1 / 2} \approx \sqrt{n-k} \sigma_{k+1}$ and n large, then the approximation might not be accurate.

Source: G. Martinsson's talk

Power iteration $q \geq 1$

The matrix $\left(A A^{T}\right)^{q} A$ has a faster decay in its singular values:

- has the same left singular vectors as A
- its singular values are:

$$
\sigma_{j}\left(\left(A A^{T}\right)^{q} A\right)=\left(\sigma_{j}(A)\right)^{2 q+1}
$$

Cost of randomized truncated SVD

- Randomized SVD requires $2 q+1$ passes over the matrix.
- The last 3 steps of the algorithms cost:
(2) Compute $Y=\left(A A^{T}\right)^{q} A G: 2(2 q+1) \cdot n n z(A) \cdot(k+p)$
(3) Compute QR of $Y: 2 m(k+p)^{2}$
(4) Compute $B=Q^{T} A: 2 n n z(A) \cdot(k+p)$
(5) Compute SVD of $B: O\left(n(k+p)^{2}\right)$
- If $n n z(A) / m \geq k+p$ and $q=1$, then (2) and (4) dominate (3).
- To be faster than deterministic approaches, the cost of (2) and (4) need to be reduced.

Fast Johnson-Lindenstrauss transform

Find sparse or structured G such that computing $A G$ is cheap, e.g. a subsampled random Fourier trasnform (SRFT),

$$
G=\sqrt{\frac{n}{k+p}} D \times F \times S, \text { where }
$$

- D is $n \times n$ diagonal with entries uniformly distributed on unit circle in \mathbb{C}
- F is $n \times n$ discrete Fourier transform, $F_{j k}=\frac{1}{\sqrt{n}} e^{-2 \pi i(j-1)(k-1) / n}$
- S is $n \times(k+p)$ random subset of the columns of the identity (draws $k+p$ columns at random from $D F$).

Computational cost

(2) Compute $A G$ in $O(m n \log (n))$ or $O(m n \log (k+p))$ via a subsampled FFT
(4) Compute $B=Q^{T} A$ still expensive! - can be reduced by row sampling References: Ailon and Chazelle (2006), Liberty, Rokhlin, Tygert and Woolfe (2006).

Summary of computation cost

Dense matrix A of size $m \times n$

- QR with column pivoting: 4mnk
- Randomized SVD with a Gaussian matrix: $O(m n k)$
- Randomized SVD with an SRFT: $O(m n \log (k))$

Results from image processing (from Halko et al)

- A matrix A of size 9025×9025 arising from a diffusion geometry approach.
- A is a graph Lapacian on the manifold of 3×3 patches.
- 95×95 pixel grayscale image, intensity of each pixel is an integer ≤ 4095.
- Vector $x^{(i)} \in \mathbb{R}^{9}$ gives the intensities of the pixels in a 3×3 neighborhood of pixel i.
- W reflects similarities between patches, $\sigma=50$ reflects the level of sensitivity,

$$
w_{i j}=\exp \left\{-\left\|x^{(i)}-x^{(j)}\right\|^{2} / \sigma^{2}\right\}
$$

- Sparsify W, compute dominant eigenvectors of $A=D^{-1 / 2} W D^{-1 / 2}$.

Experimental results (from Halko et al)

- Approximation error : $\left\|A-Q Q^{T} A\right\|_{2}$
- Estimated eigenvalues for $k=100$

Clarksson and Woodruff, STOC 2013

- Based on randomized sparse embedding
- Let S, of size poly $(k / \epsilon) \times n$ be formed such that each column has one non-zero, ± 1, randomly chosen

$$
S=\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Given A of size $n \times n$ and rank k, for certain poly (k / ϵ), with probability at least $9 / 10$, the column space of A is preserved, that is for all $x \in \mathbb{R}^{n}$,

$$
\|S A x\|_{2}=(1 \pm \epsilon)\|A x\|_{2}
$$

- $S A$ can be computed in $n n z(A)$ time

Source: Woodruff's talk, STOC 2013

Clarksson and Woodruff, STOC 2013

Main idea

- Let A be an $n \times n$ matrix
S be an $v \times n$ sparse embedding matrix, $v=\Theta\left(\epsilon^{-4} k^{2} \log ^{6}(k / \epsilon)\right)$ R an $t \times n$ sparse embedding matrix, $t=O\left(k \epsilon^{-1} \log (k / \epsilon)\right)$

$$
A^{\prime}=A R^{T}\left(S A R^{T}\right)^{-1} S A
$$

- Extract low rank approximation from A^{\prime}
- More details in Theorem 47 from STOC 2013
- Theorem 47 relies on S and R being the product of a sparse embedding and a SRHT matrix

Clarkson and Woodruff, STOC 2013

- Given $n \times n$ matrix A, it computes $L D W^{T}$, where D is $k \times k$ such that with failure probability $1 / 10$
$\left\|A-L D W^{\top}\right\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F}, A_{k}$ is best rank-k approximation.

$$
\text { flops } \leq O(n n z(A))+\left(n k^{2} \epsilon^{-4}+k^{3} \epsilon^{-5}\right) \log ^{O(1)}\left(n k^{2} \epsilon^{-4}+k^{3} \epsilon^{-5}\right)
$$

More details on CA deterministic algorithms

- [Demmel et al., 2015] Communication avoiding rank revealing QR factorization with column pivoting Demmel, Grigori, Gu, Xiang, SIAM J. Matrix Analysis and Applications, 2015.
- Low rank approximation of a sparse matrix based on LU factorization with column and row tournament pivoting, with S. Cayrols and J. Demmel, Inria TR 8910.

References (1)

Bischof, C. H. (1991).
A parallel QR factorization algorithm with controlled local pivoting.
SIAM J. Sci. Stat. Comput., 12:36-57.
Businger, P. A. and Golub, G. H. (1965).
Linear least squares solutions by Householder transformations.
Numer. Math., 7:269-276.
Civril, A. and Magdon-Ismail, M. (2013).
Exponential inapproximability of selecting a maximum volume sub-matrix.
Algorithmica, 65(1):159-176.
Demmel, J., Grigori, L., Gu, M., and Xiang, H. (2015).
Communication-avoiding rank-revealing qr decomposition.
SIAM Journal on Matrix Analysis and its Applications, 36(1):55-89.
Eckart, C. and Young, G. (1936).
The approximation of one matrix by another of lower rank.
Psychometrika, 1:211-218.
Eisenstat, S. C. and Ipsen, I. C. F. (1995).
Relative perturbation techniques for singular value problems.
SIAM J. Numer. Anal., 32(6):1972-1988.
Goreinov, S. and Tyrtshnikov, E. (2001).
The maximal-volume concept in approximation by low-rank matrices.
Contemporary Mathematics, 280:47-52.

References (2)

Gu, M. and Eisenstat, S. C. (1996).
Efficient algorithms for computing a strong rank-revealing QR factorization.
SIAM J. Sci. Comput., 17(4):848-869.
Hansen, P. C. (2007).
Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems.
Numerical Algorithms, (46):189-194.

Results used in the proofs

- Interlacing property of singular values [Golub, Van Loan, 4th edition, page 487]
Let $A=\left[a_{1}|\ldots| a_{n}\right]$ be a column partitioning of an $m \times n$ matrix with $m \geq n$. If $A_{r}=\left[a_{1}|\ldots| a_{r}\right]$, then for $r=1: n-1$

$$
\sigma_{1}\left(A_{r+1}\right) \geq \sigma_{1}\left(A_{r}\right) \geq \sigma_{2}\left(A_{r+1}\right) \geq \ldots \geq \sigma_{r}\left(A_{r+1}\right) \geq \sigma_{r}\left(A_{r}\right) \geq \sigma_{r+1}\left(A_{r+1}\right)
$$

- Given $n \times n$ matrix B and $n \times k$ matrix C, then ([Eisenstat and Ipsen, 1995], p. 1977)

$$
\sigma_{\min }(B) \sigma_{j}(C) \leq \sigma_{j}(B C) \leq \sigma_{\max }(B) \sigma_{j}(C), j=1, \ldots, k
$$

